

Game Programming Course

Game Design Document

Abstract: Development of a Sci-Fi top-down shooter through the Unity engine. The

following will discuss the game dynamics and various stages of implementation, as

well as the design choices of the System.

Alessandro De Simone

SCI-FC | Game Design Document

1

Index
1. Overview .. 3

1.1 Genre and Setting .. 3

1.2 Game mechanics .. 3

1.3 Platforms ... 3

2. Progect Description .. 4

2.1 Project goal .. 4

2.2 External influences ... 4

Hotline Miami .. 4

Synthetik ... 5

2.3 In-depth game mechanics .. 6

Protagonist .. 6

Interactions ... 6

Collectable items ... 7

Game goal ... 7

Game Over .. 7

Levels ... 7

Save ... 7

2.4 Interface .. 8

2.5 Weapons .. 8

2.6 Bullets .. 12

2.7 Grenades ... 12

2.8 Explosive barrels .. 12

2.9 Skills ... 13

2.10 Enemies ... 13

Basic robot ... 13

Advanced robot ... 13

Flying drone ... 13

Small flying drone .. 13

2.11 Procedurality ... 14

SCI-FC | Game Design Document

2

Weapon crates .. 14

Enemies spawn .. 14

IA modifier ... 14

3. Controls ... 15

4. Assets ... 16

4.1 Animations ... 16

Aiming animation .. 16

Animations override .. 17

4.2 Post-Processing .. 18

5. Design and implementation ... 19

5.1 Camera .. 20

5.2 Giocatore ... 20

5.3 Enemies ... 21

5.4 Enemies AI ... 23

5.5 Skills and Effects .. 24

5.6 Weapons .. 25

5.7 Weapons effects .. 26

5.8 Collection and interaction .. 26

5.9 Manager and Controller ... 27

Manager .. 27

Controller .. 27

5.10 Saving System .. 28

6. Future developments ... 29

SCI-FC | Game Design Document

3

1. Overview
1.1 Genre and Setting

SCI-FC can be defined as a top-down shooter placed in a SCI-FI context, specifically in

a drifting spaceship.

We will impersonate a Scavenger, a person who travels in search of abandoned

structures to retrieve wreckage and valuables, but this time she gets stuck inside a

spaceship soon after docking.

In addition to the use of firearms, she will have the opportunity to learn certain

powers (Skills) that will be performed by Nanites (Nanorobots) that she will

accumulate during the journey, producing "magical" effects.

1.2 Game mechanics

- Top-Down view

- Player interactions:

o Walking;

o Shooting;

o Dodge;

o Interacting with objects in the environment;

o Collect items;

o Learn and use Skills;

o Throwing grenades;

o Activate a flashlight;

- Goal: Find a way out of the spaceship.

1.3 Platforms

• PC

Tested on Windows and Linux

Playable using Keyboard & Mouse, or alternatively with a Gamepad.

SCI-FC | Game Design Document

4

2. Progect Description
2.1 Project goal

The main goal of the project is to gain as much knowledge as possible about the Unity

engine and the main approaches and "know-how" of Game Design. This implies

interfacing with various horizontal knowledge, from Programming to Animation, in

order to touch many aspects of the game engine.

2.2 External influences

Hotline Miami
Hotline Miami is a video game developed by "Dennaton Games" and published by

"Devolver Digital", set in late 1980s Miami. The Protagonist explores various levels

filled with enemies, often with weapons dropped at strategic points in the level or

by the enemies themselves once killed. Psychedelic and with a distinctly Arcade

rhythm. This project was inspired in terms of the general approach to the game,

while maintaining a less frenetic style.

SCI-FC | Game Design Document

5

Synthetik
Synthetik is a video game developed and published by "Flow Fire Games". Unlike

Hotline Miami, the camera this time is almost isometric, it is set in an unspecified

future and contains typical Roguelike elements.

Setting and gunplay was inspired by this title, albeit trying to emphasize a more

realistic aspect.

Both of the above titles have a fairly frenetic pace.

Therefore, to give some originality to the project, it was decided to give a slower

pace to the game, making much use of the animations (sometimes absent in

Synthetik, for example, to favor a more Arcade approach) and putting the Player and

the enemies on the same level, who will be able to use the same weapons offered to

the Player.

In addition, an Active and Passive Skill System has been implemented, helping to

make the game more dynamic.

SCI-FC | Game Design Document

6

2.3 In-depth game mechanics

Protagonist
The Main Character is equipped with a certain amount of Health and Shields. While

the latter regenerate over time, Health can only be restored at certain health stations,

scattered throughout the levels.

In addition to moving and aiming, the player can attack with the basic weapon or one

of the many found in the levels, accumulate and throw grenades of various types,

consume Nanites to use Skills, and activate a Torch in the darkest places. The player

can also dodge by rolling in the direction of movement. This last mechanic ensures

the Player a certain number of frames in which he or she cannot be harmed.

The player will always have a basic gun, with infinite ammunition, and can carry at

most one other weapon at a time, in an attempt to make the gameplay a little more

strategic.

He/She can, for example, decide to keep a grenade launcher with little ammunition

and use the pistol most of the time, or conversely stay safer with an assault rifle and

keep the pistol only as a backup weapon.

Interactions
The player can interact with various elements in the scenario, such as:

• Crates: these contains weapons, randomly chosen by a weighted distribution,

designed for each level;

• Health Station: these allow the Player to restore its health. They have a maximum

number of uses;

• Terminals: these allow the Player to learn some Skills, randomly chosen from a

pool. The player will always have two possible choices, to make the gameplay a

little more varied based on its playing style;

• Transport base: allows the Player to access the next level;

• Switches: switches that trigger events of various types, for example, opening a

locked door;

SCI-FC | Game Design Document

7

Collectable items

• Ammo crates: gives the Player an extra magazine for the currently equipped

weapon. To give a little more strategy to the game, ammunition is not

transferred once the weapon is changed; therefore, it is necessary to decide

carefully whether to invest the ammunition crate on that weapon, rather than

keeping it for a later time;

• Grenades;

• Weapons;

Game goal
The goal of the game, for each level, is to reach the nearest transport base in order to

advance, ultimately finding a way to escape from the spaceship.

Game Over
Game Over occurs when the Health of the Protagonist drops to zero. In such a case,

it will be necessary to start from the beginning of the level.

Levels
Each level is structured horizontally, with a series of rooms connected by corridors,

with forks that can lead to advancement or finding bonuses for the Player (Terminals,

ammunition, crates, etc.).

Save
Due to the nature of the game and the size of the levels, saving occurs at each Level

transition.

Information such as:

- Health, current and maximum level

- Shields, current and maximum level

- Number and type of grenades

- Current Weapon

- Skills learned

- Remaining Skills pool

- Last achieved level

SCI-FC | Game Design Document

8

Loading occurs when the game starts, while, to avoid reading the save multiple times,

passing data between levels is done through ScriptableObject, a special Unity

container asset.

2.4 Interface
The interface can be divided into two macro-situations:

- Main Menu

- Pause Menu

The main menu allows you to start a new game (overwriting an existing one), continue

a game you have already started, enter Settings or exit the game.

The pause menu allows you to resume the game, reload the current level, enter

Settings or go to the main menu.

Both menus share the Settings section, in which you can set the level of graphical

fidelity through presets, game resolution, enable or disable Full Screen, change

various volumes (Music, SFX, and Global), and reassign game controls.

The game interface (HUD), on the other hand, has been deliberately kept to a bare

minimum. It shows the ammunition for the equipped weapon, the currently selected

Skill, the level of Nanites, the type and number of grenades selected, the current level

of Health and Shields, and any messages that will appear on-screen, such as warnings

or Game Tutorials.

2.5 Weapons
Although there is an (automatic) melee attack, all currently designed weapons are

ranged.

Each weapon can be automatic or semi-automatic, has a certain range and an

eventual degradation of damage based on distance (e.g., a shotgun will make a lot of

damages at very close range, while damage will drop dramatically on long distances),

represented by a curve (function). It also has a reloading time, rate of fire, recoil,

capacity per magazine, and a certain type of bullet.

Finally, each weapon irreversibly damages a percentage of the Nanites that enemies

drop to the ground when defeated. In general, heavier weapons do more damage to

Nanites.

SCI-FC | Game Design Document

9

Pistol
Automatic NO

Nanites damage (%) 30%

Damage 20
Rate of fire (s) 0.4

Ammo capacity 12
Reloading time (s) 1.5

Bullet type Standard

Assault rifle

Automatic SI

Nanites damage (%) 50%

Damage 15
Rate of fire (s) 0.1

Ammo capacity 30
Reloading time (s) 2

Bullet type Standard

Shotgun

Automatic NO

Nanites damage (%) 70%
Damage 110

Rate of fire (s) 1

Ammo capacity 6
Reloading time (s) 3

Bullet type Shotgun

SCI-FC | Game Design Document

10

SMG

Automatic SI

Nanites damage (%) 60%

Damage 9
Rate of fire (s) 0.06

Ammo capacity 25
Reloading time (s) 1.8

Bullet type Standard

Silenced Assault Rifle

Automatic SI

Nanites damage (%) 40%
Damage 14

Rate of fire (s) 0.1
Ammo capacity 30

Reloading time (s) 2
Bullet type Standard

Plasma Rifle

Automatic SI
Nanites damage (%) 80%

Damage 20
Rate of fire (s) 0.35

Ammo capacity 12
Reloading time (s) 4

Bullet type Plasma

Grenade launcher

Automatic NO

Nanites damage (%) 70%
Damage 70

Rate of fire (s) 0.7
Ammo capacity 5

Reloading time (s) 3

Bullet type Impact
grenade

SCI-FC | Game Design Document

11

Rocket launcher

Automatic NO

Nanites damage (%) 80%

Damage 100
Rate of fire (s) 1

Ammo capacity 4
Reloading time (s) 5

Bullet type Rocket

Flamethrower

Automatic SI

Nanites damage (%) 80%
Damage 4

Rate of fire (s) 0.05
Ammo capacity 150

Reloading time (s) 2
Bullet type --

Minigun

Automatic SI
Nanites damage (%) 80%

Damage 8
Rate of fire (s) 0.08-0.04

Ammo capacity 150
Reloading time (s) 5

Bullet type Standard

Sniper
Automatic NO

Nanites damage (%) 70%
Damage 50

Rate of fire (s) 1.3
Ammo capacity 12

Reloading time (s) 4

Bullet type Raycast

SCI-FC | Game Design Document

12

2.6 Bullets
There are various types of bullets in the game, to better represent the weapons
available to the Player.
- Standard: by far the most common types of projectiles. Their movement is

rectilinear and damage can degrade with distance traveled. Having a high
velocity, their behavior is handled with a mix of game collisions and Raycast, a
solution usually adopted when "physical" projectiles are wanted.

- Shotgun: share the same logic with Standard bullets, differ visually and by the
type of shell casing they release

- Plasma: same logic as Standard, they change visually.

- Raycast: this type of bullet is instantaneous; it is precisely executed with a
Raycast. They have a high penetrating level. The damage does not degrade with
distance but after hitting a target.

- Rocket: Rockets are slower projectiles but emit an explosion on impact,
performing area damage. Their movement is straight, and they can be hijacked
with the right Skill.

- Impact grenade: these are grenades launched with a parabolic curve. Like
rockets, they explode on impact and do area damage, albeit with a smaller range.

2.7 Grenades
Three different types of grenades are available in the game:
- Explosive grenade: a common grenade that explodes doing area damage, simple

but effective.

- EMP Grenade: This grenade produces an electromagnetic pulse (EMP) that can
momentarily disable enemies and their Shields (if any) (but also the Player's).

- Slow Grenade: This grenade adds a momentary speed malus to all entities
involved in the explosion.

2.8 Explosive barrels
Scattered along the levels there are explosive barrels, of two types: classics and EMPs.

Their effects are the same as those of grenades, but they are triggered once damaged

beyond a certain threshold.

SCI-FC | Game Design Document

13

2.9 Skills
In the game, the Player will be able to learn various Skills, some with active elements,

others passive. Some are described below as examples:

- Force Shield: invokes a momentary force shield that blocks all incoming bullets;

- Tracer bullets: makes all subsequent bullets able to track the enemy, for a given

amount of time;

- Force Pulse: generates a shockwave that can momentarily repel and stun enemies.

It can also hijack rockets;

- X-ray: momentarily allows the Player to see the cone of vision of enemies and their

silhouette through obstacles;

- Sprint: momentarily increases the Player's speed;

2.10 Enemies
There are four main enemies in the game, but through management of spawn, AI level

and weapons, it was possible to make the gameplay much more varied.

Basic robot
This Robot has standard Health (100) and normal reaction times. This makes it easily

knocked down even with a simple gun.

They are able to listen to the sounds around them.

Advanced robot
This Robot has increased Health (150) and shorter reaction times. It is also generally

more accurate and more ferocious, making it fearsome even on its own, with the

wrong weapon.

They are able to listen to the sounds around them.

Flying drone
A flying drone equipped with a plasma rifle. It has a considerable amount of Health

(200), but is slower than other enemies. It also cannot perform melee attacks, and it

explodes few seconds after death.

He has no sensors to listen to sounds around him.

Small flying drone
A younger brother of the flying drone, he has a small amount of Health (40) but is

faster. It too explodes after death, albeit with a smaller radius and damage.

SCI-FC | Game Design Document

14

Each enemy can be associated with a preset for AI configuration. The chosen preset

is "Normal" by default, but for each game some enemies are randomly selected and

the presets "Easy" or "Hard" are set for them. This distribution is chosen during level

design.

Ex. Level ‘x’

- Basic robots: out of all of them, 10% will have the "Hard" preset and 5%

"Easy" preset

- Advanced robots: out of all of them, 5% will have the "Hard" preset

- Leave all other enemies unchanged

In addition, Robots may have randomly chosen weapons during the start of the level

and may have activated Shields.

2.11 Procedurality
Various procedural situations are present in the game.

Weapon crates
Each crate randomly generates a weapon from a weighted Pool. This means that an

SMG will be more likely to be generated than a Minigun.

The Pool is defined during the design of the layer.

Enemies spawn
Spawn is defined through a central location and a radius. Each of these "Spawn

points" can be associated with one or more enemies to be spawned, their number,

whether or not to activate Shields, and whether to spawn a random weapon as well.

By defining various Spawn points, it is possible to have semi-procedural level

generation, so as to allow a good balance of game difficulty (e.g., avoiding powerful

enemies at the beginning of the level) and still maintain some variety between games.

IA modifier
As explained in the previous section, it is possible to define a distribution of modifiers

for enemy AI settings, which will then be applied to random enemies in the level. In

this way the Player will find, for example, basic enemies a little more hostile and

advanced enemies a little below average.

SCI-FC | Game Design Document

15

3. Controls
The project was developed with mainly mouse and keyboard use in mind, but support

for the Gamepad was still implemented, allowing for both devices to reassign almost

all keys in the game.

Controls were handled through Unity's new InputManager, which primarily uses C#

events, unlike the old System.

Comando Tastiera e Mouse Gamepad (Xbox / PS)
Movement WASD Left Analog

Aim Mouse Right Analog

Shoot Left Mouse Button RT / R2
Use Skill Right Mouse Button LT / L2

Reload R X / Square
Interact E A / Cross

Throw grenade F LB / L1
Change grenade G RB / R1

Change weapon Q Y / Triangle

Change Skill Mouse Wheel D-Pad: Right\Left
First choice 1 D-Pad: Up

Second choice 2 D-Pad: Down
Toggle flashlight T R3

Roll Space B / Circle

SCI-FC | Game Design Document

16

4. Assets
4.1 Animations
Mixamo.com, an Adobe site that allows users to map animations to their own

(anthropomorphic) model, was used for almost all of the animations.

Aiming animation
In addition, to avoid defining an animation for each weapon, Unity's "Animation

Rigging" package was used. That package provides powerful tools for model rigging,

including the Inverse Kinematics (IK) function. While normally to make an animation

we have to start by moving the outermost joint and reiterate the process to

determine the position of the area we are interested in, with inverse kinematics it is

the other way around. In fact, it will suffice to choose the position of the area of

interest and the skeleton will be adapted accordingly.

http://www.mixamo.com/

SCI-FC | Game Design Document

17

This allowed to use a single animation for the aiming pose (idle), moving the left arm

to the correct position for each weapon (an IK is applied to the left hand on the barrel

of the weapon).

Animations override
When IKs could not be applied because the animation totally changed (think of the

difference between reloading a pistol and a rifle, or holding a rifle and a minigun)

the Animator Override Controller was used.

Such a Controller can be defined at design time, defining which animations to

change, in order to replace the basic one at runtime.

Since such a solution would have required an Animator Override Controller for each

different combination, only one was defined, for which individual animations are

replaced at runtime, defined directly in the weapon that has a specific animation.

Es. Weapon reload

A common basic animation is used for reloading, which is overwritten when

equipping a weapon with a specific reload animation, such as the Pistol or

Assault Rifles.

SCI-FC | Game Design Document

18

4.2 Post-Processing
To make the levels more alive, as well as darker by giving them more atmosphere,

some Post-Processing effects were applied to the game.

To apply such effects, it was sufficient to define a dedicated Post-Processing Layer,

associate a "Post-Process Layer" with the camera, and add a "Post-Process Volume"

to a dedicated GameObject.

In this way, effects are applied to the image buffer of the Camera before it is displayed

on the screen.

• Ambient Occlusion: is a method of shading objects. Shadows are created near

edges and between objects. Useful for giving more realistic shadow areas to

the game.

• Vignette: is an effect in which the edges of the screen are darkened slightly,

creating precisely a vignette. In this case it was used to provide feedback on the

current Health to the Player.

• Bloom: involves simulating the effect of a very bright object by producing a kind

of halo around it.

• Color Grading: is a simple color correction effect to the game.

SCI-FC | Game Design Document

19

5. Design and implementation
This chapter will give an overview of video game development, starting with design.

The general approach for development was a mixture of Object-Oriented

Programming (OOP) and Composition Over Inheritance.

While an inheritance-based approach was still chosen for some aspects, for others

this was replaced in favor of an approach similar to the Unity philosophy of building

objects by joining together multiple Components that are responsible for performing

small tasks.

In this way it was possible, for example, to implement a generic "Explosion"

Component used for all entities that can explode. Thus, a grenade will consist of a

"Grenade" Component and an "Explosion" Component, similar to an explosive barrel

consisting of "Destroyable Barrel" and "Explosion." In addition, this approach allowed

the development of variants of the same object with different behaviors, minimizing

duplicate code (e.g., the various types of grenades and barrels).

Finally, to maintain a certain level of decoupling between objects, events, both classic

C# (Action) and UnityEvent, have often been used, which are invoked from time to

time when needed.

Some of the Design Patterns used were Strategy for weapons, Singleton for some

Managers, and State for enemy AI management.

SCI-FC | Game Design Document

20

5.1 Camera
The camera is bird's-eye view, perpendicular to the X and Z axes, facing downward at
a distance of 21 units from the plane.

The Component "Position Constraint" ensures that it always follows a binding object,
in this case the Player.

In addition, the "Camera Movement" script offers the CameraShake function, which
allows you to simulate camera shake, for example, when shooting.

Finally, as explained just before, a Post-Process Layer was added to that object, thus

enabling the display of Post-Processing effects.

5.2 Giocatore
The Player entity is composed of various scripts, including:

• Player Inputs: takes care of staying listening for all inputs, then performing
the correct action for each one;

• Player Movement: manages the movement of the Player;

• Player Aim: takes care of identifying the position of the mouse (or analog) and
rotating the Player accordingly;

• Player Character: main script of the Player. It is responsible for keeping track
of current information (e.g., Health) and some of the possible actions (e.g.,
Attacking);

• Weapon Holder: script that manages access to an entity's weapons. It is
responsible for keeping references to the collected weapons and configuring
them once equipped (e.g., IK of the left hand);

• Skills: manages access to Skills. Keeps track of all collected Skills, available
Nanites, collecting them, and using the currently equipped Skill;

• Grenades Belt: keeps track of all grenades collected, available and their
launching;

• Shield: manages the Player's Shields, keeping track of their current level;

• Damageable: scripts that have all entities (animated and not) that can be
damaged. Through it a C# event is invoked when the entity is hit. In the case
of the Player the event is handled in "Player Character";

• Torchlight: manages the switching on and off of the Torchlight, as well as its
consumption over time;

• Rig Builder: Component of the "Animation Rigging" package, handles the IK of
the left hand;

SCI-FC | Game Design Document

21

• Override Animator Runtime: identifies the entities for which the Animator
Controller can be overridden (see "Animations");

• Ragdoll: handles the activation of Ragdolls when the Player dies;

• Session Player Storage: holds a reference to the ScriptableObject used to save
game data between levels. Such storage is handled in "Player Character."

5.3 Enemies
Many of the Player Components have been reused for enemies, for example the
Weapon Holder, the major differences are:

• EnemyAI: replaces the Component Player Character;

• Enemy State Machine: manages the Pattern State for the AI of enemies, as
well as having references to its variables;

• Character Ears: script that have entities that can hear external sounds,
reacting to them;

• Character Voice: handles the activation of small lines of dialogue based on the
context of the enemy;

• GUID Generator: script used to uniquely identify an object at runtime. In this
case used to distinguish enemy type during AI configuration deployment.

SCI-FC | Game Design Document

22

SCI-FC | Game Design Document

23

5.4 Enemies AI
As mentioned just above, enemy AI is managed through the State pattern. This
pattern allows the behavior of an object to be changed based, precisely, on the state
it is in.

Specifically, the enemy starts with an initial state, stationary (Idle) by rotating on
itself or patrolling (Wander) from a point A to a randomly chosen point B.

From that state it is possible to go into the Search state (Search) if alerted, or into
the Chase state (Chase) if the Player is identified. In the latter case, if the enemy
does not have a good line of sight, it goes into the flanking state (Flank), which
consists, as can be guessed, of flanking the enemy, catching him in an exposed spot.

The enemy attacks when in chasing state and the Player is in range, while backing

away or physically attacking if the latter is too close.

SCI-FC | Game Design Document

24

5.5 Skills and Effects
ScriptableObjects were initially tried to be used to manage the Abilities. While
functional, however, they had problems at the point when the Skill needed to
communicate with other Components.

For this reason, it was chosen to implement a kind of Composite Pattern, adapted
for use on Unity.
Each Skill, if not made exclusively of passive effects, has a certain cost and duration,
as well as a list of Effects.

Each Effect derives an Abstract class that identifies whether it is consumable
(passive) or not, and defines the Use() method, as well as a part that is responsible
for keeping track of the metadata that will later be shown on-screen in the game.

When an Ability is used, if it is ready to be used, it invokes the Use() method for all
effects, returning its total cost.

In this way it is possible to easily design various Skills by mixing many Effects with
each other, defining, for example, simpler but cheaper Skills or more powerful but
more expensive Skills.

The one responsible for keeping track of the Nanites and Skills learned is the "Skills"

Component.

SCI-FC | Game Design Document

25

5.6 Weapons
Initially, a classical inheritance approach was chosen for weapons. Thus, there was
an AbstractWeapon class that was inherited from the classes Pistol, AssaultRifle,
Shotgun, etc.

Soon, however, it was realized that this approach would lead to a lot of duplicate
code (between a pistol and an assault rifle potentially the firing logic remains
identical). Therefore, the gun system was reengineered, using a single "Gun" class
and applying the Strategy pattern to diversify the shooting method.

The Attack method of the Gun class invokes the Shoot method of the Abstract
IShootType class, also a Weapon Component.

In this way, it is possible to build various weapons by changing only the IShooType

Component in the weapon prefab. It is, for example, immediately possible to create

a gun that fires several missiles per second, or to design a rifle that heals entities in a

range simply by implementing a new strategy.

SCI-FC | Game Design Document

26

5.7 Weapons effects
Abilities are not the only entities that have effects. Even weapons, in fact, can apply
particular variations to gameplay.

The sniper rifle slightly increases the Field of View (FOV) of the camera, allowing a

wider area of the level to be seen, while the heavy weapons disable the dodge (roll).

5.8 Collection and interaction
For all objects that can be collected or interacted with, rather than defining an
inheritance structure, an event-based approach was chosen.

Each object that can be picked up, in addition to the Component that defines its
behavior once it is picked up, also has a "Pickable" Component, which is solely
responsible for handling the picking logic.

Similarly, objects that can be interacted with have the "Interactable" Component,

which handles the interaction logic (single interaction or continuous, disable

interaction once the object's purpose is over, and so on).

SCI-FC | Game Design Document

27

5.9 Manager and Controller
Manager and Controller are useful objects for managing various aspects of the
game, including Input, saving and loading levels.

Managers are objects that must be preserved between loading levels, while
Controllers (with the exception of the Controller that keeps track available Skills)
can be recreated at each level.

The former were then grouped into a single GameObject "Systems", placed inside the

"Resources" folder so that it could be loaded at runtime, and the "_Bootstrapper"

script was used to load that GameObject, assigning the "DontDestroyOnLoad"

property, which precisely prevents the destruction of the object between level loads.

Manager

• Input Manager*: holds a reference to the Component for Unity's new Input
system. It also takes care of loading any key reassignments when the game
starts;

• Pool Manager*: this manager is responsible for instantiating the various
Object Pools. For various GameObjects (bullets and shells), in fact, the Object
Pool pattern was used, which consists of reusing the same objects instead of
instantiating and destroying them repeatedly (think of the life cycle of a
bullet), thus improving game performance;

• Persistence Manager*: takes care of loading and saving game data to files,
through the use of events;

• Scene Loader Manager*: takes care of loading a scene in the game, also
keeps track of the last level reached, shows the Loading Canvas, and invokes
the save event between levels;

Controller

• Coroutine Controller*: allows to start Coroutine, useful to execute for objects
that are destroyed in the meantime (e.g. EMP grenades are destroyed by
explosion, but the effect ends after several seconds)

• Enemies Controller*: keeps track of enemies in the level, gives them a
weapon if they need one, manages the rendering of the enemy's field of view
if the X-Ray Skill is used, and gives the Player the Nanites dropped by defeated
enemies;

SCI-FC | Game Design Document

28

• Skills Pool Controller: is responsible for keeping track of the Skills still
available to be learned and for randomly choosing two skills when
approaching the Terminal;

• UI Controller: handles everything related to the on-screen HUD, responding
to Game Events. Communication between the logical part and the UI is done
through the Messenger class;

• Weapons Pool Controller: is responsible for generating a weapon at the
opening of a Crate, from a weighted pool;
*: Singleton

5.10 Saving System
Saving System is divided in two parts:

- The Persistence Manager is responsible for saving all game data to files. Each
class that contains data to be saved implements the IDataPersistence interface
and subscribes to the Manager's OnSave and OnLoad events. The interface
defines two methods SaveData() and LoadData(), which pass an object of type
GameData that is used to write/read data.
When a save or load is requested, the Manager invokes the respective event,
writing\reading the data to file.
During the game, saving to file is called at each level transition, while loading
from file is called at the start of the main menu and when a restart of the current
level is requested.
Some objects need to be uniquely identified upon loading (e.g., Learned Skills), for

this the "GUIDGenerator" script is used, which allows the generation of a GUID

directly in the Inspector.

- The Session Player Storage Component takes care of storing all the data related
to the Player in a ScriptableObject, so that it can be stored between levels. A
ScriptableObject, in fact, keeps the values during the entire game session, while it
is reset to zero after game exit.
Saving is requested before a Scene change is made (using the Scene Loader

Manager's "OnLoadScene" event), while loading occurs once the new Scene is

found to be loaded (using Unity's Native "SceneLoaded" event)

SCI-FC | Game Design Document

29

6. Future developments
There are various types of work that could be done in the near future, some of
which are listed below:
- More levels;

- More Skills;

- More weapons effects; currently there are only two. Maybe give a weapon a
small chance to be generated with a bonus/malus of some kind;

- Local Co-op

- More enemies, perhaps with bossfights;

- Arcade mode: endless mode in which levels are procedurally generated;

- Procedural generation of Skills, formed from set of Effects (also with Malus as
trade-offs);

- Transposition of text (data\messages, etc.) to text files, perhaps to JSON file.
ScriptableObjects are currently used, they may not be the best solution in case
you want to offer multilingual selection;

- General optimization of the game;

